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Both necessary and sufficient conditions are derived in a systematic, rigorous way
for a Reynolds stress model to preserve both frame indifference and positive semi-
definiteness of the Reynolds stresses and to satisfy the principle of material frame
indifference (PMFI). Also developed are two approximate theories, a linear theory
and a quadratic theory, to simplify the work of developing models satisfying such
conditions. The results are also valid for the higher-order correlations and the SGS
Reynolds stresses. This leads to the results either confirming the previous intuitive
arguments or offering new insights into turbulence modelling, and is of significance
in clarifying some controversies in the literature, examining how well existing models
preserve the physics, and developing new models.

An examination of various existing models with respect to the necessary and
sufficient conditions obtained in the present work shows that no one model can
simultaneously satisfy the invariance, the realizability and the PMFI. This offers
answers to some fundamental questions regarding the existing models, such as the
reason why k — ¢ and k — [ models fail to give accurate predictions for the normal
Reynolds stresses.

1. Introduction

Reynolds stresses are believed to be quantities determined by the mean velocity
field. Based on this fundamental intrinsic belief, various approaches have been pro-
posed to relate the Reynolds stresses to the mean velocity field, so-called turbulence
modelling. The readers are referred to Lumley (1990), Speziale (1991) and Gatski,
Sarkar & Speziale (1992) for some excellent reviews and discussions of this important
topic. While some results of turbulence calculations obtained based on some com-
monly used models seem encouraging, they fail to meet either one or both of two
natural fundamental requirements for turbulence models: preserving the fundamental
properties of the quantities being modelled and satisfying some classical principles
regarding the behaviour of materials.

The modelling of the Reynolds stresses consists of replacing them by constitutive
equations expressing them as functions of the mean velocity field. While such consti-
tutive equations may take different forms such as algebraic and differential, it appears
to be a basic requirement to preserve the properties which the Reynolds stresses hold
by their definition. Two such properties are the frame indifference (Speziale 1979) and
the positive semi-definiteness found by the pioneering work of Schumann (1977). The
former follows from the definition of the Reynolds stress and states that the Reynolds
stress is a second-order tensor R which transforms frame-indifferent spatial vectors
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into frame-indifferent spatial vectors. The latter comes from the fact that the velocity
field is a real-valued field and R;; is a linear function of velocity products v;v; and
indicates that R satisfies @- Ra = 0 for all vectors a in the Euclidean vector space.
(Vreman, Geurts & Kuerten (1994) have discussed a number of reasons for the
preference of a positive semi-definite subgrid-scale (SGS) Reynolds stress tensor in
large-eddy simulations, and have found that positiveness of the filter function forms
a necessary and sufficient requirement.) We can also show that the positive semi-
definiteness of R follows logically from the second law of thermodynamics (Wang
1997). The issues concerned with whether a model guarantees these two properties are
referred as the invariance and the realizability in the literature, respectively. In Schu-
mann (1977), Speziale (1979, 1980, 1984, 1985, 1987) and Speziale, Abid & Durbin
(1993), some commonly used models were examined and it was found that they were
incapable of preserving the frame indifference and/or the positive semi-definiteness.
This led to the development of improved models mainly in the context of second-order
closure modelling (Schumann 1977; Speziale 1987; Speziale, Sarkar & Gatski 1991;
Gatski & Speziale 1993; Durbin & Speziale 1994; Speziale, Abid & Durbin 1994).

While the first requirement focuses on the properties of the Reynolds stresses them-
selves, the second requirement emphasizes the relation of R with the mean velocity
fields. The purpose of Reynolds stress modelling is to develop its constitutive equa-
tions (Lumley 1970). Such equations are supposed to take account of the behaviour
of materials, and to be independent of conservation laws of mass, linear momentum,
rotational momentum and energy, etc. This is quite similar to those for the Cauchy
stresses in continuum mechanics. The constitutive relations for materials in modern
continuum mechanics are required to satisfy three principles which come from our
everyday experience in observing materials in deformation and motion (Truesdell
1966): the principles of determinism, local action and material frame indifference.
The first states that the stress of a body is determined by the history of the motion
which the body has undergone. The second indicates that the motion of the material
outside an arbitrarily small neighbourhood of a material particle may be ignored
in determining the stress acting at this particle. The third principle states that all
physical laws, definitions and descriptions of material behaviour which hold in a
dynamic process are the same for every observer, i.e. in every frame of reference.

The validity of the first principle for the Reynolds stresses is well accepted. While
some experimental results provide evidence that the Reynolds stress is determined
in a neighbourhood with radius of the order of an integral scale (Lumley 1970),
especially in strongly inhomogeous flows (Speziale 1991), the principle of local action
is still accepted to be valid at least in an approximate sense (in particular for a nearly
homogeneous turbulence flow), and is used in nearly all current models (Pope 1975;
Lumley 1990; Speziale 1991; Xu & Speziale 1996).

There is a controversy in the literature with regard to the applicability of the
principle of material frame indifference (we refer this principle as PMFI hereinafter) to
the turbulence models (Lumley 1983; Speziale 1984; Lumley 1990; Ristocelli, Lumley
& Abid 1995). This is believed to be due to the overlooking of the applicability
condition of the PMFI. In the literature (e.g. Speziale 1980; Lumley 1970, 1983),
the frame dependency of the Navier—Stokes equations and/or the Reynolds stress
transport equations is, usually, used to judge the applicability of the PMFI to the
turbulence models (in particular to conclude that the PMFI is invalid). This is clearly
improper since the PMFI holds only for the physical laws and relations regarding
the material behaviour. It is not necessarily true for the other laws such as Newton’s
second law of motion, which describes the motion of a body rather than the material
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behaviour. This law is valid only for the inertial frame of reference (Morris 1981). This
can be understood by noting that it proportionally relates the force, a frame-indifferent
vector, to the acceleration, a frame-dependent vector through mass, a frame-indifferent
scalar. The Navier—Stokes equations and the Reynolds stress transport equationst
come from Newton’s second law of motion, are valid only for the inertial frame of
reference (Morris 1981), and are unable to provide information about the Reynolds
stresses in a non-inertial frame of reference. In addition to the justification in the
literature (Speziale 1979, 1980, 1981, 1983, 1984; Pope 1983; Ristocelli et al. 1995,
etc.), we accept the PMFT also for the following reasons: (i) we expect to develop
models with sufficient generality: any model violating the PMFI cannot be a general
model; (ii) somewhere in our theoretical structure we must incorporate information
about the behaviour of materials which satisfies the PMFI, if not for the Reynolds
stress then we must impose it on the higher-order turbulence correlations.

An examination of the existing models revealed that some of them violate the
PMFI while nearly all satisfy the principles of determinism and local action (Speziale
1979, 1980, 1987, 1989, 1991; Speziale et al. 1991; Gatski & Speziale 1993). This
has motivated the development of improved models mainly in the context of the
second-order closure models (Speziale 1979, 1980, 1987; Speziale et al. 1991; Gatski
& Speziale 1993; Ristorcelli et al. 1995).

Typical previous works dedicated to developing models preserving the frame indif-
ference and/or the positive semi-definiteness and/or satisfying the PMFI are Schu-
mann (1977), Speziale (1979, 1980, 1987), Speziale et al. (1991), Gatski & Speziale
(1993), Durbin & Speziale (1994), Speziale et al. (1994), and Ristorcelli et al. (1995).
While these works have uncovered some important features of invariance, realizability
or PMFI, questions concerning both necessary and sufficient conditions for a model
to preserve both frame indifference and positive semi-definiteness and satisfy the
PMFI have been left unanswered. Also, because of the complexities of the problem,
the arguments used in the previous works are mainly intuitive in nature, focusing
on modifying the existing models by obtaining some sufficient conditions for the
invariance, realizability or PMFI (Speziale 1987). It appears necessary to re-examine
some concepts and methods in the literature. For example the frame indifference of
the Reynolds stresses and the higher-order correlations, the PMFI, and the principle
of observer transformation (Truesdell 1977) are sometimes confused in the literature
(e.g. Speziale 1979, 1980). The analysis of the invariance of Navier—Stokes equations
and the Reynolds stress transport equations (e.g. Speziale 1979, 1989) is also invalid
since such equations are only valid for the inertial frame of reference. Consequently,
the results regarding the invariance of the models based on such an analysis and new
models developed to make the Reynolds stress transport equations frame indifferent
should be re-examined.

The methods of implementing the frame indifference and the PMFI in the literature
also seem questionable. In particular, the choice of D (the velocity strain tensor of the
mean velocity) and W (the vorticity tensor of the mean velocity) as two independent
variables when applying Smith’s representation theorem of isotropic functions (Smith
1971) appears to lead to some controversial results such as the dependence of the
Reynolds stresses and higher turbulence correlations on the vorticity tensor W (Pope
1975; Speziale et al. 1991; Gatski & Speziale 1993). (Readers are referred to Speziale
(1980), Speziale et al. (1991), Gatski & Speziale (1993) and Xu & Speziale (1996) for

1 These equations relate cause (Reynolds stress) to effect (fluid motion), and are dynamic rather
than constitutive relations. We cannot expect a validation of the PMFI for them.
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details of this controversy.) An examination of Smith’s representation theorem shows
its applicability conditions: (i) the function must be a symmetric or skew tensor-
valued isotropic function; (ii) all independent variables must be symmetric tensors,
skew tensors or vectors; and (iii) the independent variables must be independent of
each other. Note that D and W cannot be considered to be independent. The turbulent
kinetic energy k, the length scale of turbulence [ (or the turbulence dissipation rate ¢),
and mean velocity gradients cannot be considered as the independent variables either
(Speziale 1987).

It is well accepted in the turbulence literature that the Reynolds stresses are related
to the rates of strain and local scalar quantities (Pope 1975). However, a rigorous
analysis is not available regarding what should be used as such characteristic scalars
and how many scalar quantities are required. Based on some intuitive assumptions
and dimensional arguments (Lumley 1970; Pope 1975), k and [ (or ¢) are usually used
as two characteristic scalars in the literature. This lacks justification, and leads the
models developed to be implicit since k is function of the Reynolds stresses. While k,
[ (¢) are of physical significance, they may not necessarily be characteristic scalars in
relating the Reynolds stresses to the mean flow fields.

The motivation for the present work comes from the desire to derive both necessary
and sufficient conditions in a systematic rigorous way for a Reynolds stress model to
preserve both frame indifference and the positive semi-definiteness of the Reynolds
stresses and to satisfy the PMFI. In the derivation, no intuitive assumptions are
introduced. This leads to some conclusive results. Among them, some confirm the
previous intuitive arguments, and others form new insights into turbulence modelling.
Also developed in the present work are two approximate theories to simplify the
development of specific models satisfying both necessary and sufficient conditions
for the invariance, realizability and PMFI. Although some results may be known
to some readers, the approach to obtaining them is believed to be more systematic
and rigorous. A similar analysis can been carried out for the high-order turbulence
correlations and the SGS Reynolds stresses occurring in large-eddy simulation (LES)
(Mason 1994; Ciofalo 1994 ; Lesieur & Métais 1996).

As a general approach is developed for establishing physics-preserving turbulence
closure models, it is necessary to construct the theory from first principles incorporat-
ing as much physics as possible. A complete physics-preserving model of turbulence
has thus to include (i) invariance, (ii) realizability, (iii) PMF]I, (iv) effect of memory, (v)
non-locality, and even (vi) non-determinism of the mean flow properties, in particular,
for large-eddy simulation cases (Mason 1994; Schumann 1995). This complicates the
analysis so much that new mathematical tools have to be developed first. Within
the scope of the present work, i.e. deriving both necessary and sufficient conditions
for a model to satisfy the first three requirements, we impose both the principle of
determinism (without taking account of the effect of memory) and the principle of
local action on our constitutive relations. The results are therefore limited to nearly
homogenous flows with negligible effect of memory. The readers are referred to
Mason (1994) and Schumann (1995) for a detailed discussion on the physical aspects
of non-locality etc. No attempt is made in the present work to develop specific models
through experimentally determining the coefficients in the general model.

Though the present work develops, from essentially first principles, a more general
model which forms both necessary and sufficient conditions for the invariance, re-
alizability and PMFI, the author does not see it as detracting in any way from the
value of the previous works on this subject. Those works continue to be of interest
and importance as they pioneered such an important and difficult subject, and the
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previous models can be used for certain turbulence flows by noting that all specific
models were developed by determining the coefficients through experiments.

2. Frame indifference of Reynolds stresses and PMFI

Consider a class of constitutive relations which relate R to v, L and the other
scalar-valued parameters which are independent of » and L, i.e.

R = F(OP,u,L). (1)

Here R is a second-order tensor which can be Reynolds stresses, SGS Reynolds stresses
or the higher turbulence correlations; v is a vector-valued variable in the Euclidean
vector space and can be the mean velocity vector (ensemble or time mean), or filtered
velocity vector; L is a second-order tensor-valued variable which is the velocity
gradient tensor of v; OP denotes the other scalar-valued thermophysical parameters
which are independent of v and L and are typically the local thermodynamic state
variables; F is a second-order tensor-valued function.

In sharp contrast to the literature (Pope 1975; Speziale et al. 1991; Gatski &
Speziale 1993), we choose L as an independent variable instead of its symmetric part
D (the velocity strain tensor) and skew part W (the vorticity tensor) because D and
W cannot be regarded as independent. We do not include k, [ or ¢ as the independent
variables, and do not restrict F to be symmetric or skew tensor-valued either. The
exclusion of the explicit dependence of R on time t and position vector r comes from
the fact that they affect R through OP, » and L.

The constitutive relation (1) satisfies both the principle of determinism and the
principle of local action since we assume that R at a point is a function of OP,» and
L at that point. It is also quite general in the sense that the effects of memory and
higher orders of L such as L and VL are usually not significant. An analysis for a
more general constitutive relation permitting the dependence on such higher orders
of L and taking account of the effects of memory and non-locality of turbulence will
be the topic of future research.

2.1. Necessary conditions
2.1.1. R—v relation

THEOREM 1. R is independent of v.

Proof. For a second observer *, the PMFI and the frame indifference of R together
require that

R* =F((OP)",v",L"), (2)

R* =Q(HRQ (1), (3)

in which superscript * represents the quantities observed by observer *; and Q is an
arbitrary rotation tensor.
From the principle of observer transformations (Truesdell 1977),

(OP)" = OP,
rm=Q(t)r + (), (@)
v =dr/dt = Q(t)r + Q(t)v + é(1),

L* =Q)LQ’ () +Q()Q’ (1),
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where r is a position vector of a material point; ¢(t) is an arbitrary vector-valued
function of time ¢; and a dot over a letter indicates a time derivative.
On substitution of (1), (3) and (4) into (2), we have that (suppressing t)

QF (OP,v,L)Q" = F(OP,Qr + Qv +¢,QLQ” +QQ7) VQ and ¢ (5)

which indicates that F is not an isotropic function of v and L in general. ‘
Since (5) holds for all Q, it must be true for Q = 1. Take Q = 1, then Q = 0.
Equation (5) thus yields

F(OP,v,L) = F(OP,v +¢,L) Ve. (6)
This implies that F is independent of v.
By applying Theorem 1, (1) and (5) reduce to
R =F(OP,L), (7)

QF(OP,L)Q" = F(OP,aLQ” +@Q") va. (8)

2.1.2. R—L relation

Note that L can be uniquely decomposed into a symmetric tensor D (the velocity
strain tensor) and a skew tensor W (the vorticity tensor). Expression (8) may then be
rewritten as

QF(OP,L)Q" = F(OP, @apQ” + awQ” +QQ") va. 9)

THEOREM 2. For any fixed time t and all time t,

Q1) = exp[Q(— )] =Y %9

n=0

is a rotation tensor provided that Qisa fixed (time-independent) skew tensor.

Proof. From the theory of series, it is well known that the series
o0
Z (t=1)" O
!
~ n!

is absolutely convergent to exp[f)(t —1)].

Let

5 ~ (=7,

Q(1) = exp[R(t — 1)] = ZO Q.
Then

Q(r) =1,
Q) = —dgit) =Q+ (-0 + It 1)+
=QU+ (-1 + 1t — PP+ L — 02+ 1= Qa1
and

@TQ) =@ Q2 +2T)a =0
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if Q is a skew tensor. Therefore
Q'(na(t)=Q"(1)Q(r) =1 V. (10)
Since (det G) = det G tr(GG™!) for all invertible G, then
(detQ) =detQ tr(QQ7T) = detQ tr(2QQ7) = detQ tr(2) = 0.
Therefore,

detQ(t) =detQ(r) =detl =1 Vr. (11)
Expressions (10) and (11) are the mathematical form of Theorem 2.

THEOREM 3. For rotation tensor Q(t) = exp[f)(t—r)]é, at any instant T, we can take
Q(7) and Q(1)Q7 (1) to be arbitrary independent rotation and skew tensors respectively,
where Q is any fixed rotation tensor, and €2 is any fixed skew tensor.

Proof. Since both Q and exp[fl(t — 1)] are rotation tensors (Theorem 2), then
Q(t) = exp[L2(t — 7)]Q 1is also a rotation tensor for all time t. Also,

Q) = Q, (12)

Q(r)Q’ (1) = 2Q(1)Q" (1) = Q. (13)
They are clearly independent rotation and skew tensors if Q and  are arbitrary fixed
rotation and skew tensors respectively.

THEOREM 4. L affects R only through the velocity strain tensor D.

Proof. To prove this, choose Q(t) defined in Theorem 3 as the rotation tensor in
(9), while for any instant T, —QWQT|, is used as the skew tensor 2, ie. 2 = —QWQT|,

(such a Q is a skew tensor since 27 = —Qw’Q’|, =awQ’|, = —Q). Then at time
t =1, (9) yields

QF(OP,L)Q" = F(OP,@DQ") Vva. (14)

Since this is true for all fixed rotation tensors (5, it must hold for @ = 1. Let @ = 1,
then (14) leads to

F(OP,L) = F(OP,D) (15)
or
R = F(OP,D). (16)

2.1.3. R-D relation
By applying (16), the PMFI yields
R* = F((OP)",D"). (17)
By applying the frame indifference of R and D* = QDQ” (Truesdell 1977) in (17), we
obtain
QF (OP,D)Q” = F(OP,a@DQ") VvaQ (18)

which indicates that F is an isotropic function of D. However, we cannot appeal to
Smith’s representation theorem (Smith 1971) since we do not restrict R to be the
symmetric or skew tensor.
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Since the velocity strain tensor D is a real symmetric tensor, it has three real
eigenvalues. The three eigenvalues can be distinct, or identical, or two of them can
be identical. In the present work, we focus on the case that the three eigenvalues are
distinct. Similar results may be obtained for the other two cases.

THEOREM 5. Each of three eigenvectors of D is also an eigenvector of F if it satisfies
(18).

Proof. Let {e;} (i = 1,2,3) be the eigenvectors of D. The corresponding eigenvalues
are denoted by 4; (i = 1,2,3). Then, D may be represented, in its spectral form, as

3
D=> Je®e. (19)
i=1

As (18) holds for all rotation tensors we can take a particular rotation
Q=2 ®e —1 (20)
to obtain a necessary condition. Such a Q is a rotation because
QT = (2e; ®e; —1)(2e; ® e —1) =1,

det@Q = det(2e; ® e, — 1) = (—1)’ det(1 — 2e; ® ;) = —(1 — 2e; - ¢;) = 1.
For the rotation Q defined by (20), it is a simple matter to show that

Qe1 = ey, (21)
082 = —€), (22)
Q€3 = —e3, (23)

which imply that {e;} (i = 1,2,3) are the eigenvectors of Q. The corresponding
eigenvalues are 1, —1, and —1. Also, e; is the unique axis of Q. For the rotation Q
defined by (20), expression (18) yields

i=1 i=1

3 3
QF(OP,D)Q" = F(OP,@DQ") =F (oRZziQei ® Qei> =F (OP, Ziiei ® ei>

= F(OP,D) (24)
in which (19), (21)—(23) have been used. This yields (post-multiply by Q)
QF (OP,D) = F(OP,D)Q. (25)
Thus
QF (OP,D)e; = F(OP,D)Qe; = F(OP,D)e, (26)
which implies that
F(OP,D)e; = pie (27)

for some scalar y; since e; is the unique axis of Q. This shows that e; is an eigenvector
of F(OP,D).

Similarly, we can show that e, and e; are the other two eigenvectors of F by taking
Q =2e¢;, ®e;— 1 and Q = 2e; ® e; — 1 respectively. This leads to the conclusion that
{e;} (i =1,2,3) are the eigenvectors of F.
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Applying Theorem 5, F can be represented as

3
F(OP,D) = 1(OP,D)e; ® ¢;

i=1

where {y;} (i = 1,2,3) are the eigenvalues of F.
Define three scalar-valued functions ¢;(OP,D) (i =0, 1,2) by

1 /11 /AL% ¢)0 H
1 /"LZ /"Lz ¢1 = 12%) s
1 A 3 03 I

2
=2 b
k=0

Such ¢;(OP,D) (i =0, 1,2) are well defined since

1y A2
det| 1 )\/2 )é = (/11 — Az)(ig — /13)(23 — il) 7& 0
1 i3 A2

S8}

1e.

for the distinct 4.
After applying (19) and (30), (28) yields

3 2
FOP.D)=> "> ¢iite;® e; = pol + ¢1D + p,D°.

i=1 k=0

By applying (31) for both F(OP,D) and F(OP,QDQT), (18) yields

2
Q {Z[d)i(OP, apQ’) — ¢i(op,o)]ni} Q’ =0 va.
i=0
Pre-multiplying (32) by QT and post-multiplying by Q yields
2
> [¢(OP,@DQ") — ¢,(OP,D)]D' = 0.

i=0

349

(28)

(29)

(30)

(31)

(32)

(33)

THEOREM 6. 1, D and D?* are linearly independent if three eigenvalues of D are

distinct.

Proof. Suppose that 1, D and D? are linearly dependent, i.e.
ol + D +7D*> =0

where at least one of «, f and y is not zero. This, with aid of (19), yields

3
Z(oc + Bl +72)e; ® e = 0.

i=1

(34)

(35)
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Then
3
> o+ B +7ie =0 (36)
k=1
in which the mutual orthogonality of {e;} (i = 1,2, 3) has been used. This leads to
o+ Bl 92 =0 (k=1,23) (37)

since {e;} (k =1,2,3) are linearly independent.

Equation (37) shows that each A, is a root of the same quadratic equation. It is
obvious that at least two of the /;, must be equal. This is contrary to the hypothesis
of distinct A;. Thus, to satisfy (34), o, f and y must all be zero which implies that 1,
D and D? are linearly independent.

By applying Theorem 6, (33) gives
$/(OP,D) = ¢,(OP,@DQ") (i=0,1,2) Vva. (38)

THEOREM 7. The ¢;, which satisfy (38), depend on D only through its invariants

Ii(D) =trD = A1+ A, + 43, (39)
Iz(D) = %[trzD — '[I'Dz] = )Vl/lz + 11/13 + /1213, (40)
I3(D) =detD = /lliz}q (41)

where
trD?> = tr(DD).

Proof. To prove this theorem, we need to prove
¢:(OP,A) = ¢:(OP,B) (i=0,1,2)

whenever I (A) = [(B) (k = 1,2,3). Here A and B are two symmetric tensors.
Suppose I (A) = I[(B) (k = 1,2,3), then A and B have the same eigenvalues which
are donated by 4; (i =1,2,3). A and B may thus be represented by

3 3
AZZ/L‘(I,'@(I,‘, B=Zilb,®b;
i=1 i=1

where {a;} and {b;} (i = 1,2,3) are the eigenvectors of A and B respectively.
Define

Q= b,~ ® a;. (42)
Then Q is a rotation because

QQT:Q(ai®bi):Qai®bi:bi®bi:19

Qa; - Qa; X Qa;
a*a X a

detQ = =1.

Thus

3 3
QAQ" = J(Qa;® Qa;) = > Ji(hi ® b;) = B. (43)
i=1 i=1
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By the hypothesis, (38) holds for all rotations. It must be true for the Q defined by
(42). Applying (38) and (43) leads to

¢:(OP, A) = ¢;(OP, B).
Thus we have
¢:(OP,D) = y;(OP,1,(D),I,(D),I;(D)) (i=0,1,2). (44)
Conversely, if (44) holds, then
$:(OP,@DQ") = ;(OP,I,(QDQ"),I,(@DQ™),1;(@DQ")) (i =0,1,2). (45)

But
1,(@DQT) = tr(@DQT) = tr(DQQ”) = trD = I,(D), (46)
(@DQ") = 1[tr’(@DQ") — tr(@DQ")’] = 1[tr’D — tr(QD*Q")]
= 1[tr’D — tr(D*QQ")] = L [tr’D — trD*] = I,(D), (47)
;(@DQT) = det(@QDQT) = det’Q det D = det D = I;(D). (48)

Thus (44) and (45) lead to (38). Therefore, (44) is both a necessary and sufficient
condition for (38).
By applying Theorem 7, (31) can be written as
2
R=F(OP.D)=> yD' (49)
i=0
where
yi = pi(OP,11(D),15(D),I3(D)). (50)

This is the necessary condition for both the frame indifference of R and the PMFIL.
It is interesting to note that symmetry of D ensures the symmetry of R. This implies
that the frame indifference of R and the PMFI together require the symmetry of R.

If the three eigenvalues of D are not distinct, we can still obtain (49) by the same
method, with y; =y, = 0 (for the case of three identical eigenvalues) or y, = 0 (for
the case of two identical eigenvalues). Therefore, (49) is valid for all cases.

2.2. Sufficiency of (49) for both frame indifference of R and PMFI
Suppose (49) holds, then

F(OP,@DQ") = y,(OP,1,(@DQT),I,(QDQ™),1;(@DQ " ))1
+y1(OP,1;(@DQ "), I,(@DQ"),I;(Q@DQ"))aDQ”
+,(OP,1;(@DQT),I,(@DQ"),I;(@DQ"))apDQ” aDQ”

= yo(OP,1;(D), I,(D), I;(D))Q1Q"
+y1(OP, 1,(D),1;(D),I3(D))@DQ "
+2(OP,1;(D),I,(D),I5(D))@D*Q"
= QF(OP,D)Q"
after applying (46)—(48). This establishes the sufficiency of (49) for both the frame
indifference of R and the PMFI. Since (49) is both a necessary and sufficient condition,

we conclude that (i) every model which does not belong to (49) is not properly
invariant; and (ii) every model satisfying (49) is properly invariant.
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3. Positive semi-definiteness of R

Let 4; and f; (i = 1,2, 3) be the three eigenvalues of the D and R respectively. Since
R is related to D by (49), then

fi=wo+widi+pdl (i=1,273) (51)

Because D and R are real-valued symmetric tensors, 4; and f; (i = 1,2,3) must be
real-valued, that is

fi="fi (52)
Ii = /11‘, (53)
where the overbar stands for the conjugate. By (51)
— . = . 72
fi=Vo +Vii + P2ty (54)
Substituting (52) and (53) into (54) yields
fi =0 + ik + P24 (55)

This, with (51), yields

(po —Po) + (Y1 =P+ (w2 —P)4 =0 VL €R (56)
which indicates that
vi=v; ((=0,1,2). (57)
Therefore, y; (i =0, 1,2) must be real-valued.
The necessary and sufficient condition for a symmetric tensor to be positive semi-

definite is that all of its eigenvalues are positive semi-definite. Thus both a necessary
and sufficient condition for the realizability is

Yo+ pidi+ il =0 Vi ER (58)

in which the equality is for the reversible processes in the sense of the second law
of thermodynamics while the inequality is for the irreversible processes (Wang 1997).
Note that the flow processes are irreversible. We restrict the following analysis for
finding the necessary and sufficient conditions for (58) to the case of strict inequality,
ie.
o+ pidi+ydt >0 Vi €R (59)
Two necessary conditions for (59) can be easily obtained by considering the cases
of J; =0 and | 4; |— oo respectively as

Yo > Oa (60)
Py > 0. (61)
By dividing (59) by o, we can rearrange it into the alternative form
i\ 2
<1+”’1 > +(W—"’1z>z$>o Vi € R, (62)
2y o 4wy
This yields another necessary condition by setting 4; = —2yo /vy :
wi — o2 <0 (63)

or
| w1 < 2(poy2)'/% (64)
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Conversely, it is easy to show that (60), (61) and (63) also constitute sufficient
conditions for (59). Consequently, we can conclude that (i) every model violating
(60), (61) or (63) is incapable of preserving the positive definiteness of the Reynolds
stresses, and (ii) every model satisfying (60), (61) and (63) preserves the positive
definiteness of the Reynolds stresses. It is worth noting that these conditions must
be satisfied not only by every turbulence model, but also in each iteration step of a
numerical scheme.

4. Discussion

Equations (49), (60), (61) and (63) form a closure model which is both a necessary
and sufficient condition for preserving both the invariance and realizability of R and
satisfying the PMFI. It differs from those in previous works mainly in following as-
pects: (i) the previous models (e.g. Speziale 1987; Durbin & Speziale 1994; Speziale et
al. 1994; Pope 1983; Lumley 1978) are only the sufficient condition for the invariance,
realizability and/or the PMFTI; (ii) it is derived in a mathematically rigorous manner
without the introduction of intuitive assumptions in the derivation; (iii) the frame
indifference of R, the PMFI and the principle of observer transformation are clearly
distinguished in its derivation; and (iv) the independent variables are chosen in a
proper way.

Several important features are revealed regarding the Reynolds stress closure. First,
a properly invariant model cannot depend on the mean velocity itself (Theorem 1).
The models permitting such dependence (Lumley 1970; Speziale 1979, 1981, 1982,
1987 and 1991) are thus improperly invariant. It is found, from the present work
(equation (49)), that the frame-indifference of R and the PMFI together ensure the
symmetry of R. The three eigenvectors of R are the same as those of D (Theorem 5).
The three corresponding eigenvalues are related to those of D through (51).

The Iy, I,, and I; formed by D are found to be three characteristic scalars for a
properly invariant model. The application of k, I or ¢ as the characteristic scalars
in the literature comes from intuitive arguments, and needs to be re-examined. Note
also that the Iy, I,, and I are only functions of D. The models using them as the
characteristic scalars will be explicit. This would reduce the computational effort.

The present model shows that a properly invariant model cannot involve W
explicitly. This confirms the finding by Speziale (1980). However, the models proposed
recently by Speziale et al. (1991), Gatski & Speziale (1993), Ristorcelli et al. (1995),
and Xu & Speziale (1996) depend explicitly on W. Though such models were derived
based on the consideration of the invariance and the PMFI, they are not properly
invariant. This is believed to result from the use of D and W as two independent
variables.

For a model to be realizable, it must satisfy (60), (61) and (63). With vanishing 1y,
for the k — [ or k — ¢ models (Speziale 1987), (61) and (63) are violated. Thus the
k — ¢ and k — | models cannot preserve the realizability. It is well known that the
k — 1 and k — & models can give rise to highly inaccurate predictions for the normal
Reynolds stresses which make it impossible to describe or predict turbulent channel
flow, secondary flow in non-circular ducts and separated turbulent flows (Speziale
1987) in which the normal Reynolds stresses play an important role. Note that the
realizability puts a restriction on the models by taking account of normal Reynolds
stress properties. The violation of both the necessary and sufficient condition for the
realizability may be the reason why they can yield inaccurate predictions for the
normal Reynolds stresses.
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As an example, we analyse how well Prandtl’s mixing length model preserves the
physics. In a tensorial form, it can be written as (Hinze 1959; Schlichting 1968)

R = —pl1 4+ 2i1pl*(2trD*)'>D = —p1 + 2i,pI*(2(1} — 21I,))"*D

in which —p = %trR, 1y is a dimensionless constant, p is the density of the fluid, and [
is the distance from the wall for wall turbulence. It can be classified as a special case
of (49) with o = —p, v; = 2 pl?(2(I} — 21,))'/?, and y, = 0. Therefore Prandtl’s
mixing length model is capable of preserving the frame indifference of R and satisfies
the PMFI. However, it is incapable of preserving the positive definiteness of R since
this violates (61) and (63).

5. Linear and quadratic theories

Equation (49), with (60), (61) and (63), forms a general Reynolds stress closure
model which is both a necessary and sufficient condition for invariance, realizability
and PMFI. Although these equations can be used to judge whether a particular
model is properly invariant and/or realizable, they are not convenient to use in
finding new specific models because they contain three functions y; (i = 0,1,2)
of It (D) (k = 1,2,3). Such functions must be determined through experiments.t
However, it is very complicated and difficult (if not impossible) to carry out such
experiments because of the varieties of possible motions. That being so, it is natural to
introduce some simplifications or approximations to reduce the y; to some parameters
independent of I, through factoring out the effect of I,. The linear and quadratic
theories to be developed here are two such approximate theories. Unlike the exact
theory, we cannot expect the approximate theories to be valid for any turbulent
flows which can be described by (1). However, such approximate theories deserve
to be studied because we cannot understand the exact theory without first having
understood the approximate theories to which it gives rise. Note that the linear and
quadratic relations are usually used to approximate the general nonlinear relation,
and are often accurate enough for some turbulent flows.

5.1. Linear and quadratic theories

Suppose that we can approximate the relation between R and D by a linear or
quadratic form for some turbulent flows in the group described by (1). To obtain an
approximate theory, set

A

D =eD (65)
where
| D |= (DyDij)"* = o(1) (66)
and
e 1. (67)

Assuming that y; (i =0, 1,2) are smooth in I; (k = 1,2,3) (physically, this assumes
that D affects R in a continuous way; it is a reasonable assumption for practical

+ It is believed that all details regarding constitutive relations can be obtained by imposing
enough fundamental principles or laws. At the present time, however, the author is unaware of
any other fundamental laws which can be used to further constrain y; (although we may invoke
the Buckingham-IT theorem (see Brand 1957) to further limit the form of any expression for
y;.). Therefore, it is only from experiments that they can be determined at the present stage of
development of theory.
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turbulent flows), then Taylor expansion of y; around D =0 (I, = 0;k = 1,2, 3), gives
that

oy
vi(OP, I;) = ;(OP, 0) +ka L

3 3
621/)4
I : I}
ol 22 135, o)

I;=0 k=1 j=1 Iy=0
(i=0,1,2)  (68)
in which ;(OP,I;) = p;(OP,I4,1,,15); p;(OP,0) = y;(OP,0,0,0), and I, = 0 means
that I = I, = I; = 0. Note that
I, = trD = tr(eD) = etrD = o(e),
21, = éX[(trD)* — trD?] = o(€?), (69)
= det(eD) = €* det D = o(€?).

Then
A 61/)1 2 a Vi 3
p;i(OP, I},) = y;(OP,0) + etrD + 2trD 5 + o(€”)
ol 1k=0 6 I, L= ol 1,=0
(i=0,1,2), (70)
and
- 0o 2 o 2 2a Yo 3
vo(OP, 1)1 = | 1po(OP, 0) +etr D —=> EeL(D)==| +é&trD 1+o(€”),
al, I 0 ol I=0 611 Ix=0
(71)
0
1(OP, I,)D = 1 (OP, 0)eD + etroen% + o), (72)
1 5,=0
12(OP, It)D* = 1p2(OP,0)’D” + o(€’). (73)
Retaining terms up to o(e) and o(e?) respectively yields a linear theory for (49)
R, = [a(OP) + b(OP)trD]1 + ¢(OP)D, (74)

and a quadratic theory
R, = [a(OP) + b(OP)trD + d(OP)I;(D) + ¢(OP)tr*D]1
+[c(OP) + f(OP)trD]D + g(OP)D? (75)

where
4(OP) = 1o(OP,0), b(OP) = 20|
611 1=0
¢(OP) = 1,(OP,0), d(OP)= 2P|
ol |, (76)
%o N o1
(OP) 12 |1k =05 f(OP) - 6711 Ik:oa
¢(OP) = 1,(OP, 0)

are functions of some scalar-valued parameters OP which are independent of D. It is
clear that the higher-order theory will introduce more parameters. Such parameters
are much easier to determine through experiments because of their independence of
D. Furthermore, we can invoke other fundamental laws such as the Buckingham-IT
theorem (Brand 1957) to further simplify the experiments.
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5.2. Positive definiteness
By making use of (60), (61) and (63), we have

a >0, (77)
g >0, (78)
> —4ag < 0. (79)
If we approximate R by R; or R,, the realizability requires that
fi=a+btrD+c/; >0 (i=1,23), (80)
or
fi=a+btrD +dIy(D) + etr’D + (c + ftrD)A; + gA? >0 (i =1,2,3). (81)

Since R; and R, are just approximations of (49), we cannot expect (80) and (81) to
be valid for all 4;, trD, I, € R. However, they should be satisfied by all 4;, trD, and
I, of a class of turbulent flows for which the Reynolds stresses can be approximated
by R; or R,.

Although the coefficients a—g in R; and R, are related to y; (i = 0,1,2) by (76),
they are not expected to be determined by (76) as y; (i = 0,1,2) are much more
difficult to determine experimentally. They should be determined directly through
experiments, and be regarded as empirical coefficients like those in the previous
models such as Prandtl’s mixing-length, k — ¢, k — [, effective-viscosity, and nonlinear
k — & and k — | models (Speziale 1987). As a matter of fact, R; and R, are similar
to these previous models in the sense that they all relate the Reynolds stresses to D
in a linear or quadratic manner through some experimentally determined coefficients.
The main differences are however that: (i) the I; and I, (not k, [ or ¢) are used as
the characteristic scalars in R; and R,, and (ii) R; and R, satisfy both necessary and
sufficient conditions for the invariance, realizability and PMFI approximately. Thus
R; and R, yield a better prediction than the previous linear and quadratic models in
the literature.

After analysing the invariance of second-order turbulence closure models, Speziale
addressed an interesting question: ‘Why not mathematically model the Reynolds
stresses directly? (Speziale 1979). Indeed, we have less a priori knowledge about
the higher turbulence correlation introduced by the second-order approach than the
Reynolds stresses themselves (Speziale 1979). The results obtained in the present work
are believed to be useful in modelling the Reynolds stresses directly because (49),
(60), (61) and (63), and the linear and quadratic theories developed in the present
work form the conditions which must be satisfied by any specific properly invariant
and realizability-preserving model.

6. Concluding remarks

For a class of turbulent flows for which the Reynolds stresses can be described by
(1), both necessary and sufficient conditions are derived in a systematic, rigorous way
for the invariance, realizability and PMFI. This leads to a general model (49) with
three real-valued functions y; (i = 0, 1,2) satisfying (60), (61) and (63). The results
are also valid for the higher-order turbulence correlations and the SGS Reynolds
stresses occurring in large-eddy simulations (LES). Any specific model satisfying (49),
(60), (61) and (63) is properly invariant and realizable while a model violating these
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conditions is not. The work is believed to be important both for developing specific,
properly invariant and realizable models and for clarifying some confusion in the
literature by noting that the previous works employ an intuitive approach with the
focus on only obtaining the sufficient condition.

To simplify the experiments for finding the specific, properly invariant and realizable
closure models, two approximate theories, a linear theory and a quadratic theory, are
developed. In these two approximate theories, the Reynolds stress—strain relations are
approximated by a linear relation and by a quadratic relation respectively. Such an
approximation can be easily extended to higher order. All such approximate theories
reduce the modelling to determining some parameters which are independent of mean
velocity strain.

It appears necessary to re-examine the following concepts and methods prevalent
in the literature: (i) the invariance of the Navier—Stokes equations and the Reynolds
stress transport equations; (ii) the confusion about the frame indifference of the
Reynolds stresses and the higher-order correlations, the PMFI, and the principle of
observer transformation; (iii) the use of some quantities which are dependent as the
independent variables; and (iv) the use of turbulent kinetic energy k and the turbulence
dissipation rate ¢ (or the length scale of turbulence /) as the characteristic scalars in
relating the Reynolds stresses to the rates of strain and local scalar quantities.

The present work confirms some previous intuitive arguments in the literature such
as (i) the independence of R of v, (ii) the independence of R of W, and (iii) the
symmetry of R, etc.

The Iy, I, and I3 defined by (39)—(41) are found to be three characteristic scalars
relating the Reynolds stresses to the rates of strain and local scalar quantities. The
eigenvectors of R are the same as those of D with the associated eigenvalues related
to those of D by (51). Prandtl’s mixing length model, the k — [ model, the k — ¢
model, and some models recently proposed in the literature are examined in terms
of their invariance, realizability and satisfaction of the PMFI with respect to both
the necessary and sufficient conditions. While they may satisfy one or two of the
three requirements, no one can simultaneously satisfy the invariance, the realizability
and the PMFI. The violation of both the necessary and sufficient condition for the
realizability is believed to be the reason why the k—I and k—¢& models yield inaccurate
predictions for the normal Reynolds stress.

The author is indebted to one of the anonymous referees for his critical review and
constructive comments/suggestions on the original manuscript.
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